

DETERMINATION OF PA2 VALUE OF PRAZOSIN ON RAT ANOCOCCYGEUS MUSCLE

To determine the pA_2 value of prazosin on the rat anococcygeus muscle by assessing its competitive antagonism against adrenergic agonists. This study aims to evaluate the potency and receptor affinity of prazosin by constructing dose-response curves in the presence and absence of the antagonist, thereby providing insights into its pharmacological characteristics and inhibitory effects on α_1 adrenoceptors. The two anococcygeal muscles emerge from upper coccygeal vertebrae that are close together in the middle of the pelvic cavity.

EQUIPMENT REQUIRED

Animal :-	Rat
Drug:-	Prazosin (1mg/ml)
Instrument:-	Student Organ Bath, kymograph.
Physiological salt solution:	- Krebs solution or Tyrode solution

PRINCIPLE

The pA_2 value is a pharmacological parameter used to determine the potency of a competitive antagonist by measuring its ability to shift the dose-response curve of an agonist. In this study, prazosin, a selective α_1 -adrenoceptor antagonist, is tested on the rat anococcygeus muscle, a smooth muscle known for its adrenergic responsiveness.

The experiment involves generating cumulative dose-response curves for an adrenergic agonist (e.g., norepinephrine or phenylephrine) in the absence and presence of prazosin at different concentrations. A rightward parallel shift of the dose-response curve without a change in maximal response indicates competitive antagonism. The Schild plot is then constructed to determine the pA_2 value, which represents the negative logarithm of the antagonist concentration required to double the agonist EC₅₀ (effective concentration for 50% maximal response).

This approach provides insight into the receptor-binding affinity and inhibitory potency of prazosin, contributing to a better understanding of its pharmacodynamics on α_1 -adrenoceptors in smooth muscle tissues.

When simply and swiftly dissected, the two muscles are roughly 3cm long, 0.5cm wide at the widest point, and just 150-300mm thick. Tissue preparation provides numerous advantages for common procedures, including:

1) Parallel bundles of smooth muscle cells form a thin sheet. This design decreases diffusion for drug access and ion exchange experiments.

2) The muscle is bilateral, allowing for control and test preparations from the same animal. Additionally, it is densely adrenergically innervated.

3) Pre- and post-ganglionic fibers are found. Other agonists, such as acetylcholine and adenosine, cause smooth muscle contractions based on concentration.

PROCEDURE:

1. Preparation of Solutions:

- Prepare physiological salt solution Krebs solution or Tyrode solution and maintain it at pH 7.4.
- Prepare stock solutions of prazosin (α₁-adrenoceptor antagonist)
- Serially dilute the agonist and antagonist to obtain working concentrations.

2. Animal Preparation:

- Humanely sacrifice a rat following ethical guidelines.
- Dissect and isolate the anococcygeus muscle under a dissecting microscope.
- Transfer the muscle to a petri dish containing aerated Krebs or tyrode solution.
 3. Mounting of Tissue:
- Attach one end of the anococcygeus muscle to a tissue holder and the other end to an isometric force transducer in an organ bath containing Krebs solution or Tyrode solution (maintained at 37°C and continuously aerated with 95% O₂ and 5% CO₂).
- Maintain a resting tension of approximately 1 g and allow the tissue to equilibrate for 30–45 minutes, with regular washing every 10 minutes.

5. Antagonism Study:

- Wash the tissue thoroughly and allow it to re-equilibrate.
- Repeat the dose-response experiment in the presence of a fixed concentration of prazosin.
- Observe the shift in the dose-response curve and repeat with additional higher concentrations of prazosin.

6. Data Analysis:

- Plot dose-response curves of the agonist in the absence and presence of prazosin.
- Determine the EC₅₀ values for each curve.
- Calculate dose-ratios and construct a Schild plot (log(dose-ratio -1) vs. log [prazosin]).
- Determine the pA₂ value, which is the negative logarithm of the antagonist concentration that produces a twofold shift in EC₅₀.
 A type production

7. Interpretation:

- A parallel rightward shift of the dose-response curve without a change in maximum response confirms competitive antagonism.
- The pA_2 value indicates the potency of prazosin as an α_1 -adrenoceptor antagonist.

CALCULATION & INTERPRETATION:

Amount in μg = conc. Of Prazosin (0.1 $\mu g/mL$) x Amount added in ml

Concentration of Prazosin in Organ bath contains 20ml solution = Amount in μ g/20mL

Molar conc. Of Prazosin in micromole/ml = (Conc. Of Prazosin in organ bath contains 20ml solution) / Molecular weight of Prazosin (383.4g/mol)

PA2 = - (Log molar conc. Of Antagonist) PA2= -(-6.10)

PA2= 6.10

CONCLUSION

The determination of the pA_2 value of prazosin on the rat anococcygeus muscle provides insights into its potency as a competitive α_1 -adrenoceptor antagonist. The rightward shift of the dose-response curve in the presence of prazosin, without a change in maximal response, confirms its competitive antagonism.

The calculated pA₂ value represents the affinity of prazosin for α_1 -adrenoceptors, allowing a quantitative comparison with other antagonists. This study contributes to understanding the pharmacodynamic properties of prazosin, which is clinically used for conditions such as hypertension and benign prostatic hyperplasia by inhibiting α_1 -mediated smooth muscle contraction.

Sr.	Conc.	Amount		Conc. In Organ		In Absence of Prazosin		
No	OfAch	Added		bath				
	$(\mu g/mL)$	in						
		Organ						
		Bath						
		In	In	µg/mL	Log	Response	%Response	
		mL	μg		Conc.	(in mm)		
1.	10	0.1	1	0.05	-1.301	5	22.7	
2.	10	0.2	2	0.1	-1	9	40.9	
3.	10	0.4	4	0.2	-0.69	14	63	
4.	10	0.8	8	0.4	-0.39	18	81	
5.	10	1.6	16	0.8	-0.09	22	100	
6.	10	3.2	32	1.6	0.2	22	100	

IDEAL OBSERVATION

Sr. No.	Vol. of	Increasing	Response	%	Molar	Log Molar
	Norepinephrine	dose of	height	Response	Conc. Of	Conc. Of
	(Agonist)	prazosin	(mm)		Antagonist	Antagonist
		(Antagonist)				
1	0.4	0.2	12	85.71	2.6 x 10⁻ ⁶	-6.58
2	0.4	0.4	10	71.42	5.2 x 10⁻ ⁶	-6.28
3	0.4	0.6	7	50	7.82 x 10 ⁻⁶	-6.10

RESULT:

The results of the study on the determination of the pA₂ value of prazosin on the rat anococcygeus muscle showed a dose-dependent inhibition of the contractile response induced by an α_1 -adrenoceptor agonist (e.g., noradrenaline or phenylephrine). The Schild plot analysis yielded a pA₂ value, indicating the potency of prazosin as a competitive antagonist at α_1 -adrenoceptors.

The calculated pA_2 value was within the expected range for prazosin, confirming its high affinity for α_1 -adrenoceptors and competitive inhibition mechanism. These findings validate the use of prazosin as a standard α_1 -adrenoceptor antagonist in pharmacological studies.

DISCUSSION:

The study confirmed prazosin as a potent competitive α_1 -adrenoceptor antagonist in the rat anococcygeus muscle.

The obtained pA_2 value aligns with reported data, indicating its high affinity and competitive inhibition mechanism.

The rightward shift in the dose-response curve without altering the maximum response supports its mode of action.

These findings reinforce prazosin's pharmacological role in smooth muscle relaxation, relevant to its clinical use in hypertension and benign prostatic hyperplasia.